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Abstract

In the recent few weeks I keep working on the Variable Projection (VARPRO) method. Here I

summarize the several main points I have met in these days: matrix/complex calculus, optimization

methods and conjugate gradient descent method. As all of them are fundamental knowledge, hopefully

this summary can serve as a reference in the future.

I. MULTIVARIABLE DERIVATIVES

A. Single Variable Scalar Function

We firstly review multivariable calculus for real functions before we move on to matrix and

complex calculus. We know that the Taylor expansion of a function f : R→ R is:

f(x) = f(x0) +
df

dx
|x=x0(x− x0) +

d2f

dx2
|x=x0(x− x0)2 + ...

=
∞∑
n=0

dnf

dxn
|x=x0(x− x0)n. (1)

This is an important result for analytic functions. Approximations using the partial sums of the

series can simplify problems, which we can see in the following sections.

B. Multivariable Scalar Function

Then consider a multivariable function f : Rn → R. Its second-order Taylor expansion can

be written similarly as:

f(x) = f(x0) +5f |x=x0(x− x0) +
1

2
(x− x0)TH|x=x0(x− x0) + ..., (2)
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where x ∈ Rn and written as x = [x1, x2, ..., xn]T , 5f is the gradient of function f and defined

as 5f = [ ∂f
∂x1
, ∂f
∂x2
, ..., ∂f

∂xn
], and H is a n× n matrix which is the so-called Hessian matrix:

H =


∂2f
∂2x1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂2x2

· · · ∂2f
∂x2∂xn

...
... . . . ...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂2xn

 . (3)

The general term of the Taylor expansion for multivariable functions is much more complex

than the second-order expansion above:

f(x) =
∞∑

m1=0

∞∑
m2=0

· · ·
∞∑

mn=0

(x1 − x1,0)m1 · · · (x2 − x2,0)m2

m1! · · ·mn!
(
∂m1+m2+···+mnf

∂m1x1 · · · ∂mnxn
)|x=x0 . (4)

C. Multivariable Vector Function

A more general case is to expand a vector function f : Rn → Rm,

f(x) = f(x0) + J |x=x0(x− x0) + o(‖x− x0‖), (5)

where the Jacobian matrix Jm×n is defined as:

J =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
... . . . ...

∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn

 . (6)

From the equations (1) (2) (5) above, we can find some consistence among them: both gradient

5f and the Jacobian matrix J can be regarded as ”first derivatives”. The difference between

them is that the gradient is the first derivative of a scalar multivariable function, and Jacobian

matrix is of a vector multivariable function. Furthermore, the Hessian matrix, which is in the

sense of second-derivatives, can be regarded as the Jacobian matrix of the gradient of a scalar

function.

Later when we introduce the notation of matrix calculus, both the gradient and Jacobian can

be written uniformly:

5f =
∂f

∂x
, (7)

J(f) =
∂f

∂x
. (8)
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TABLE I

MATRIX CALCULUS IN NUMERATOR LAYOUT [1]

Scalar Vector Matrix

Scalar dy
dx

dy
dx

= [∂yi
∂x

] dY
dx

= [
∂yij
∂x

]

Vector dy
dx

= [ dy
dxj

] dy
dx

= [ ∂yi
∂xj

]

Matrix dy
dX

= [ ∂y
∂xji

]

And the Hessian matrix can be written as:

H =
∂(5fT )

∂x
= J(5fT ). (9)

II. MATRIX DERIVATIVES

Matrix calculus is a useful notation to simplify the formulation of multivariable calculus.

A. Layout Conventions

Note that there are mainly two notation conventions of matrix calculus that are used in various

of fields: numerator layout and denominator layout. For example, when handling the derivative

of a vector with respect to a vector, i.e., ∂y
∂x

, where y ∈ Rm, x ∈ Rn. The result can either be

arranged as an m×n matrix (numerator layout) or n×m matrix (denominator layout). The same

issue arises whether to treat the gradient of a scalar function, ∂f
∂x

, as a row vector or a column

vector. The key concept is to lay the derivatives according to y and xT (numerator layout) or

yT and x (denominator layout).

It does not matter which convention one chooses. However, consistence should be maintained

throughout one complete work.

A lookup table for numerator layout (which we used in Eqn. (7)-(9)) is shown in TABLE I.

Note that the indexes i, j represent the row index and column index, respectively.

B. Basic Examples

Some basic examples are shown in TABLE II, where we treat all vectors as a column vector.

The proofs are trivial following the steps below:

1) Clarify the dimentions of both terms.
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TABLE II

MATRIX CALCULUS EXAMPLES

Derivative Numerator Layout Denominator Layout

∂aT x
∂x

aT a

∂Ax
∂x

A AT

∂aTXb
∂X

baT abT

∂xTAx
∂x

xT (A+ AT ) (A+ AT )x

∂xTAx
∂xT

(A+ AT )x xT (A+ AT )

∂2xTAx
∂x∂xT

A+ AT A+ AT

∂‖x‖22
∂x

2xT 2x

∂
∂X
‖X‖2

F 2XT 2X

2) Element-wise calculate derivatives.

3) Put the results according to a specific layout convention.

More examples about derivatives of determinants, inverse matrices, eigenvalues, traces and

norms can be found in the Matrix Cookbook by K. B. Petersen [2].

III. COMPLEX DERIVATIVES

A complex scalar function f : C→ C is differentiable if the limit,

lim
z→z0

f(z)− f(z0)

z − z0

, (10)

exists over all possible approaches to z0.

A function f(x+ iy) = u(x, y) + iv(x, y) is differentiable at point z0 = x0 + iy0 if and only

if the real functions u, v satisfy the Cauchy-Riemann equations at point z0:

∂u

∂x
=
∂v

∂y
,
∂v

∂x
= −∂u

∂y
, (11)

or equivalently,
∂f

∂y
= i

∂f

∂x
. (12)
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In this case, we can calculate the derivative of f by:

df

dz
=
∂u

∂x
+ i

∂v

∂x
. (13)

A function f is further said to be holomorphic or analytic1 at z0 if it is differentiable at every

point in an open neighbor of z0, which implies that the Eqn. (11) is valid throughout the region

we are dealing with.

Another complex derivative, the conjugate complex derivative, is introduced as:

df

dz̄
=

1

2
(
∂f

∂x
+ i

∂f

∂y
). (14)

It is obvious that f is differentiable if df
dz̄

= 0, which implies roughly that f is functionally

independent from the complex conjugate of z. When deriving a complex gradient, the conjugate

complex derivative is useful. If f is a real function of a complex vector z, then the complex

gradient vector is[2]:

5f(z) = 2
∂f

∂z̄

=
∂f

∂x
+ i

∂f

∂y
. (15)

The same result holds if z is a matrix. These expressions can be used for gradient descent

algorithms.

The chain rule for complex numbers can be expressed as following[2].

∂g(u(x))

∂x
=

∂g

∂u

∂u

∂x
+
∂g

∂ū

∂ū

∂x

=
∂g

∂u

∂u

∂x
+ (

∂ḡ

∂u
)∗
∂u

∂x
, (16)

where ∗ also denotes complex conjugate. If the function g(u) is analytic, the second term turns

to be zero.

Some basic examples are shown in TABLE III.

1To be precise, the definition of holomorphic and analytic are different in analysis: A complex function is defined as

holomorphic at a point a if it is differentiable at every point within some open neighbor of a, while is defined as analytic

at a if it can be expanded as a converged power series in some open neighbor of a. However, one major theorem of complex

analysis is that holomorphic functions equals analytic (which is not true for real functions). This is why holomorphic and analytic

are interchangeable in the sense of complex analysis.
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TABLE III

COMPLEX CALCULUS EXAMPLES

Function Derivative

zk(k integer) kzk−1

ez ez

f(z) + g(z) f ′(z) + g′(z)

f(z)g(z) f ′(z)g(z) + f(z)g′(z)

1
f

− 1
f2
f ′

IV. UNCONSTRAINED OPTIMIZATION METHODS

Unconstrained optimization problems usually focus on the minimization of a scalar function

over multivariables f : Rn → R, i.e.,

x? = argmin f(x). (17)

Descent methods are a main class of unconstrained optimization methods. Descent methods

are to produce a minimizing sequence[3] x(k), k = 1, 2, . . . for function f , where

x(k+1) = x(k) + t(k)∆x(k) (18)

and t(k) > 0. t is called the step length and ∆x(k) is called the search direction. The search

direction in a descent method must satisfy

5f(x(k))∆x(k) < 0. (19)

The general descent algorithm is as following.

1) Given a starting point x(0).

2) Repeat until stopping criterion is satisfied.

a) Determine a descent search direction.

b) Line search. Choose a step length t > 0.

c) Update. x := x+ t∆x.
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A. Gradient Descent Method

A simple choice for the search direction is the negative gradient ∆x = −5 f(x)T , and the

resulting algorithm is called the gradient descent method. According to the Chapter 9.3.1 [3],

the converging rate of gradient descent method with exact line search would be linear:

f(x(k))− x? ≤ ck(f(x(0))− x?), (20)

c = 1−m/M < 1, (21)

ck ≈ 1− km/M, (22)

where m and M come from the assumption of strong convexity,

mI � H(f) �MI.

B. Newton’s Method

Another descent direction is called the Newton step

∆xnt = −H(f(x))−15 f(x)T . (23)

Positive definiteness of H(f(x)) implies that ∆xnt satisfies the descent direction requirement

(19),

5f(x)∆xnt = −5 f(x)H(f(x))−15 f(x)T < 0, (24)

unless x is optimal and 5f(x) = 0.

The motivation of Newton’s Method comes from the second-order Taylor approximation as

shown in Eqn. (2), which we rewrite here as

f̂(x) = f(x0) +5f |x=x0∆x+
1

2
∆xTH|x=x0∆x. (25)

Referring to the third column of TABLE II of matrix calculus, the minimizer of f̂(x) satisfies

∂f̂

∂x
= 5f(x0)T +H(f(x0))∆x ≡ 0, (26)

which directly leads to the Newton step (23).

It is also mentioned in [3] that the Newton step can be regarded as the steepest descent

direction for the quadratic norm defined by the Hessian matrix. And the converging rate is said

to be quadratic.

September 29, 2017 DRAFT



8

C. Quasi-Newton Method

The quasi-newton methods are based on Newton’s method. While Newton’s method uses the

Hessian matrix, quasi-newton methods does not need to compute the Hessian matrix directly,

but to update it by analyzing successive gradient vectors instead.

Rewriting ∂f̂
∂x

by 5f(x)T in Eqn. (26), we have,

5f(x)T = 5f(x0)T +H(f(x0))∆x ≡ 0. (27)

It is easy to see that an approximation of the Hessian matrix ˆH(f(x)) can be solved from the

equation above. The various quasi-newton methods just differ in their choice of the solution of

it. Some of the most common ones are named as DFP, BFGS, etc., which can be easily found

through web search.

D. Non-linear Least Squares Problem

Linear least squares problem is to solve

x0 = arg min
x∈Fn
‖Ax− b‖, (28)

where A ∈ Fm×n (F = R or C, and m ≥ n) and b ∈ Fn. The fact is that the solution of x0 to

this least squares problem is

x0 = A†b+ y0, (29)

where y0 ∈ ker(A) [4]. Among all the selections of y0, x0 = A†b is the unique solution of

minimum length; specifically, if A has full rank of n, x0 = A†b is the unique solution to (28).

As we can see the linear least squares problem has been well handled, the general non-linear

squares problem

β? = arg min
β∈Fn
‖r(β)‖2

2, (30)

where r ∈ Fm and m ≥ n, still remains to be carefully considered.

Matlab: Least Squares (Model Fitting). “Although the function in LS can be minimized

using a general unconstrained minimization technique, as described in Basics of Unconstrained

Optimization, certain characteristics of the problem can often be exploited to improve the iterative

efficiency of the solution procedure. The gradient and Hessian matrix of LS have a special

structure...Consider the efficiencies that are possible with the Gauss-Newton method. Gauss-

Newton Method on Rosenbrock’s Function shows the path to the minimum on Rosenbrock’s
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function when posed as a least-squares problem. The Gauss-Newton method converges after

only 48 function evaluations using finite difference gradients, compared to 140 iterations using

an unconstrained BFGS method.”

1) Gauss-Newton Algorithm: Gauss-Newton algorithm (GNA) can be seen as a modification

of the Newton’s method. The difference is that GNA can only be used in least squares problems

but without the labor of estimating the Hessian matrix.

Using the expansion of a vector function as shown in Eqn. (5), we have

r(β) ≈ r(β(s)) + J(r(β(s)))(β − β(s)), (31)

where J(r(β(s))) is the Jacobian matrix of r over β at point β(s).

Substituting r(β) in Eqn. (30) by (31), we have a linear least squares problem in the same

form as Eqn. (28),

β? ≈ arg min
β∈Fn
‖r(β(s)) + J(r(β(s)))∆β‖2

2, (32)

where ∆β , β− β(s). As Jacobian matrix is most likely fully ranked, the solution to this linear

least squares problem is ∆βgna = −J†r = −(JHJ)−1JHr, which is exactly the search direction

of GNA.

2) Levenberg-Marquardt Algorithm: The Levenberg-Marquardt algorithm seeks an interpola-

tion between GNA and gradient descent method. Note that the gradient of r(β) over β equals

−2JHr, this interpolation can be achieved by replacing JHJ in ∆βgna by JHJ + λI:

∆βlma = −(JHJ + λI)−1JHr. (33)

The smaller λ is, the closer it is to GNA; the bigger λ is, the closer it is to gradient descent.

V. CONJUGATE GRADIENT DESCENT

Conjugate gradient descent method is used to solve linear equations:

Ax = b, (34)

where A is a n× n positive definite matrix and b is a n× 1 vector.
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A. Concept

Let x∗ be the unique solution to it. As x∗ is also the unique minimizer of the quadratic

function,

f(x) =
1

2
xTAx− xT b, (35)

f(x) is smaller if we are closer to x∗. Therefore we can redefine our problem from solving an

equation set (34) to minimizing an object function (35).

Assume the initial guess is x0 = 0 without loss of generality, otherwise we replace b with

b − Ax0. If we are using gradient descent method at step k, we will move in the direction of

the negative gradient: b − Axk , rk, and we can certainly do that here. However, the gradient

descent method has low converging rate, for which we prefer to use the so-called conjugate

gradient descent.

In conjugate gradient descent method, we form another set of orthogonal basis pk using Gram-

Schimidt orthonormalization,

pk = rk −
∑
i<k

pTi Ark
pTi Api

. (36)

And the update is given by,

xk+1 = xk + αkpk, (37)

αk =
pTk rk−1

pTkApk
(38)

B. Convergence Properties

Theoretically, the conjugate descent method gives out the exact solution after a number of

n iterations. But it is unstable with respect to even small round-off errors. Fortunately, the

conjugate descent method as an iteration method can improve the solution xk monotonically.

This improvement is linear and its speed is determined by the condition number κ(A): the larger

κ(A) is, the slower the improvement[5].

In order to accelarate the convergence, the preconditioner P−1 is often used when κ(A) is

large, i.e., solve the following problem,

P−1(Ax− b) = 0, (39)

where κ(P−1A) is smaller by a proper selected P .
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