publications

2025

  1. LLM
    conflicting_context.png
    Open domain question answering with conflicting contexts
    Siyi Liu, Qiang Ning, Kishaloy Halder, Wei Xiao, Zheng Qi, Phu Mon Htut, Yi Zhang, Neha Anna John, Bonan Min, and 2 more authors
    Findings of NAACL, 2025
  2. LLM
    aligning_to_constraints.png
    Aligning to Constraints for Data-Efficient Language Model Customization
    Fei Wang, Chao Shang, Shuai Wang, Sarthak Jain, Qiang Ning, Bonan Min, Vittorio Castelli, Yassine Benajiba, and Dan Roth
    Findings of NAACL, 2025

2022

  1. NLP
    pinks.png
    PInKS: Preconditioned commonsense inference with minimal supervision
    Ehsan Qasemi, Piyush Khanna, Qiang Ning, and Muhao Chen
    AACL, 2022
  2. NLP
    quasi_naacl22_preview.png
    Answer Consolidation: Formulation and Benchmarking
    Wenxuan Zhou, Qiang Ning, Heba Elfardy, Kevin Small, and Muhao Chen
    NAACL, 2022
  3. NLP
    shuaicheng-naacl22-preview.png
    Extracting Temporal Event Relation with Syntax-guided Graph Transformer
    Shuaicheng Zhang, Qiang Ning, and Lifu Huang
    Findings of NAACL, 2022
  4. NLP
    SteQE-ACL22-preview.png
    A Meta-framework for Spatiotemporal Quantity Extraction from Text
    Qiang Ning, Ben Zhou, Hao Wu, Haoruo Peng, Chuchu Fan, and Matt Gardner
    ACL, 2022
  5. Control
    controller-tac22-preview.png
    Controller Synthesis for Linear System With Reach-Avoid Specifications
    Chuchu Fan, Zengyi Qin, Umang Mathur, Qiang Ning, Sayan Mitra, and Mahesh Viswanathan
    IEEE Transactions on Automatic Control, 2022

2021

  1. NLP
    ester-emnlp21-preview.png
    ESTER: A Machine Reading Comprehension Dataset for Reasoning about Event Semantic Relations
    Rujun Han, I-Hung Hsu, Jiao Sun, Julia Baylon, Qiang Ning, Dan Roth, and Nanyun Peng
    EMNLP, 2021
  2. Theory
    pabi-emnlp21-preview.png
    Foreseeing the Benefits of Incidental Supervision
    Hangfeng He, Mingyuan Zhang, Qiang Ning, and Dan Roth
    EMNLP, 2021
  3. NLP
    spartqa-naacl21-preview.png
    SPARTQA: A Textual Question Answering Benchmark for Spatial Reasoning
    Roshanak Mirzaee, Hossein Rajaby Faghihi, Qiang Ning, and Parisa Kordjamshidi
    NAACL, 2021
  4. NLP
    tracie-naacl21-preview.png
    Temporal Reasoning on Implicit Events from Distant Supervision
    Ben Zhou, Kyle Richardson, Qiang Ning, Tushar Khot, Ashish Sabharwal, and Dan Roth
    NAACL, 2021
  5. NLP
    wen-naacl21-preview.png
    Event Time Extraction and Propagation via Graph Attention Networks
    Haoyang Wen, Yanru Qu, Heng Ji, Qiang Ning, Jiawei Han, Avi Sil, Hanghang Tong, and Dan Roth
    NAACL, 2021

2020

  1. Theory
    learnability.png
    Learnability with Indirect Supervision Signals
    Kaifu Wang, Qiang Ning, and Dan Roth
    NeurIPS, 2020
  2. NLP
    contrast_set.png
    Evaluating models’ local decision boundaries via contrast sets
    Matt Gardner, Yoav Artzi, Victoria Basmova, Jonathan Berant, Ben Bogin, Sihao Chen, Pradeep Dasigi, Dheeru Dua, Yanai Elazar, and 2 more authors
    Findings of EMNLP, 2020
  3. NLP
    torque-cover.png
    TORQUE: A Reading Comprehension Dataset of Temporal Ordering Questions
    Qiang Ning, Hao Wu, Rujun Han, Nanyun Peng, Matt Gardner, and Dan Roth
    EMNLP, 2020
  4. NLP
    crowdaq-preview.png
    Easy, Reproducible and Quality-Controlled Data Collection with CROWDAQ
    Qiang Ning, Hao Wu, Pradeep Dasigi, Dheeru Dua, Matt Gardner, Robert L. Logan IV, Ana Marasović, and Zhen Nie
    EMNLP Demo, 2020
  5. LLM
    quase-acl20-preview.png
    QuASE: Question-Answer Driven Sentence Encoding
    Hangfeng He, Qiang Ning, and Dan Roth
    ACL, 2020
  6. LLM
    tacolm-acl20-preview.png
    Temporal Common Sense Acquisition with Minimal Supervision
    Ben Zhou, Qiang Ning, Daniel Khashabi, and Dan Roth
    ACL, 2020

2019

  1. NLP
    mctaco.svg
    "Going on a vacation" takes longer than" Going for a walk": A Study of Temporal Commonsense Understanding
    Ben Zhou, Daniel Khashabi, Qiang Ning, and Dan Roth
    EMNLP, 2019
  2. LLM
    knowsemlm-conll19-preview.png
    KnowSemLM: A Knowledge Infused Semantic Language Model
    Haoruo Peng, Qiang Ning, and Dan Roth
    CoNLL, 2019
  3. NLP
    joint-emnlp19-preview.png
    Joint Event and Temporal Relation Extraction with Shared Representations and Structured Prediction
    Rujun Han, Qiang Ning, and Nanyun Peng
    EMNLP, 2019
  4. NLP
    cogcomptime-neural-emnlp19-preview.png
    An Improved Neural Baseline for Temporal Relation Extraction
    Qiang Ning, Sanjay Subramanian, and Dan Roth
    EMNLP, 2019
  5. Theory
    ISIT19-preview.png
    An information theoretic model for summarization, and some basic results
    Eric Graves, Qiang Ning, and Prithwish Basu
    ISIT, 2019
  6. Theory
    partial-naacl19-preview.png
    Partial Or Complete, That’s The Question
    Qiang Ning, Hangfeng He, Chuchu Fan, and Dan Roth
    NAACL, 2019
  7. LLM
    introbert-preview.png
    Roadmap of word embedding techniques and how that leads to BERT
    Qiang Ning
    Tech notes, 2019

2018

  1. NLP
    cogcomptime-preview.png
    CogCompTime: A Tool for Understanding Time in Natural Language
    Qiang Ning, Ben Zhou, Zhili Feng, Haoruo Peng, and Dan Roth
    EMNLP Demo, 2018
  2. NLP
    matres-acl18-preview.png
    A Multi-Axis Annotation Scheme for Event Temporal Relations
    Qiang Ning, Hao Wu, and Dan Roth
    ACL, 2018
  3. NLP
    tcr-acl18-preview.png
    Joint Reasoning for Temporal and Causal Relations
    Qiang Ning, Zhili Feng, Hao Wu, and Dan Roth
    ACL, 2018
  4. NLP
    sem18-preview.png
    Exploiting Partially Annotated Data in Temporal Relation Extraction
    Qiang Ning, Zhongzhi Yu, Chuchu Fan, and Dan Roth
    Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics, 2018
  5. NLP
    temprob-naacl18-preview.png
    Improving Temporal Relation Extraction with a Globally Acquired Statistical Resource
    Qiang Ning, Hao Wu, Haoruo Peng, and Dan Roth
    NAACL, 2018

2017

  1. NLP
    emnlp17-preview.png
    A Structured Learning Approach to Temporal Relation Extraction
    Qiang Ning, Zhili Feng, and Dan Roth
    EMNLP, 2017
  2. Brain
    tbme17-preview.png
    Spectral Quantification for High-Resolution MR Spectroscopic Imaging With Spatiospectral Constraints
    Qiang Ning, Chao Ma, Fan Lam, and Zhi-Pei Liang
    IEEE Transactions on Biomedical Engineering, 2017
  3. Brain
    mrm17-preview.png
    High-resolution 1H-MRSI of the brain using short-TE SPICE
    Chao Ma, Fan Lam, Qiang Ning, Curtis L Johnson, and Zhi-Pei Liang
    Magn Reson Med., 2017
  4. Theory
    tensor-preview.png
    Review of tensor decomposition
    Qiang Ning
    Tech notes, 2017
  5. Theory
    graph2vec-preview.png
    Review of Graph2Vec
    Qiang Ning
    Tech notes, 2017

2016

  1. Brain
    nuisance-removal-preview.png
    Removal of Nuisance Signal from Sparsely Sampled 1H-MRSI Data Using Physics-based Spectral Bases
    Qiang Ning, Chao Ma, Fan Lam, Bryan Clifford, and Zhi-Pei Liang
    Annual ISMRM Scientific Meeting and Exhibition, 2016

2015

  1. Brain
    isbi15-preview.png
    Spectral estimation for magnetic resonance spectroscopic imaging with spatial sparsity constraints
    Qiang Ning, Chao Ma, and Zhi-Pei Liang
    2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), 2015
  2. Brain
    ismrm15-preview.png
    Joint Estimation of Spectral Parameters from MR Spectroscopic Imaging Data
    Qiang Ning, Chao Ma, and Zhi-Pei Liang
    Annual ISMRM Scientific Meeting and Exhibition, 2015
  3. Theory
    bounds-preview.png
    A Summary of Some Interesting Bounds in Estimation and Learning
    Qiang Ning
    Tech notes, 2015
  4. Theory
    crb-preview.png
    The Cramer-Rao Bound and Its Application to Quantification in MRS
    Qiang Ning
    Tech notes, 2015

2014

  1. Brain
    embc14-preview.png
    Towards Short-TE MR Spectroscopic Imaging: Spectral Decomposition and Removal of Baseline Signals
    Qiang Ning, Chao Ma, Curtis L Johnson, and Zhi-Pei Liang
    Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2014
  2. Brain
    prelim-preview.png
    Constrained Spectral Estimation for Magnetic Resonance Spectroscopic Imaging
    Qiang Ning
    Prelim, 2014
  3. ML
    nn-basics-preview.png
    Notes on NN basics
    Qiang Ning
    Tech notes, 2014

2013

  1. Vision
    SR-SPL13-preview.png
    Image Super-Resolution Via Analysis Sparse Prior
    Qiang Ning, Kan Chen, Li Yi, Chuchu Fan, Yao Lu, and Jiangtao Wen
    IEEE Signal Processing Letters, 2013
  2. Theory
    matrix-preview.png
    Matrix Derivatives and Descent Optimization Methods
    Qiang Ning
    Tech notes, 2013
  3. Theory
    gradient-nonlinear-preview.png
    Gradient Calculation for Nonlinear Linear Squares Problems with Complex Numbers
    Qiang Ning
    Tech notes, 2013
  4. Theory
    varpro-preview.png
    A Proof of the VARiable PROjection (VARPRO) Method in Hilber Space
    Qiang Ning
    Tech notes, 2013
  5. ML
    one-class-preview.png
    One-class Classification: ν-SVM
    Qiang Ning
    Tech notes, 2013