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1 Introduction

Matrices are two-dimensional arrays. As a generalization of matrix, tensor can
be defined as follows.

Definition 1.1. An element in Fn1×n2×···×nk , where F is an arbitrary field of
numbers (we used R throughout this note) is called a k-th order n1×n2×· · ·×nk
tensor.

We can see that this definition is compatible with vectors and matrices:
vectors are simply 1st order tensors and matrices are 2nd order tensors. A
downside of this view of tensors is the lack of geometric insight. In fact, tensors
can also be defined as multilinear maps (similarly to matrices which can be
defined as linear maps), but here we restrict to the multidimensional array
standpoint.

Before working on tensors, we need to introduce the tensor product operator
“⊗”, which provides a concise representation for tensors.

Definition 1.2. If V = v1 ⊗ v2 ⊗ · · · ⊗ vk, where vi ∈ Rni , ∀i = 1, . . . , k, then
V is a k-th order n1 × n2 × · · · × nk tensor with its (j1, . . . , jk)-th entry being∏k

i=1 vi,ji .

Note this definition is also compatible with the outer product of two vectors.
Suppose u ∈ Rm and v ∈ Rn; then u · vT ∈ Rm×n is a matrix, which is exactly
the 2nd order tensor specified by u⊗ v.

It is no doubt that tensors are computationally expensive to work with (due
to the curse of dimensionality). In recent years, however, researchers have de-
signed successful (and relatively efficient) learning algorithms for latent variable
models based on tensor decomposition, either implicitly or explicitly [1]. One
may ask: what are the unique advantages that tensors can bring us. Therefore,
in this lecture note, we will first review an example from Spearman on matrix
decomposition [2, 3], from which we can see why matrices are inconvenient in
certain settings. We then introduce tensor decomposition as a generalization
of matrix decomposition and also its unique properties that make it different
to matrices. Finally, we take the mixture of Gaussians as an exemplary latent
variable model and show how tensor decomposition can be used to learn the
model parameters.
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1.1 Matrix Decomposition

Theorem 1.3. Singular-value decomposition (SVD): Suppose A ∈ Rm×n. Then
there exists a decomposition of the form

A = UΣV T ,

where Σ ∈ Rm×n is a diagonal matrix with non-negative diagonal entries, U ∈
Rm×m, V ∈ Rn×n, and U and V are both orthogonal matrices (i.e., U−1 = UT ,
V −1 = V T ).

Another commonly used format to write SVD is

A =

min (m,n)∑
i=1

σiuiv
T
i ,

where σi is the i-th element on the diagonal of Σ (a.k.a. the i-th singular value),
ui and vi are the i-th column of matrix U and V , ∀i, respectively.

Charles Spearman was a psychologist who postulated that there are essen-
tially two types of human intelligence: quantitative and verbal. In his exper-
iments, he collected the performance of a thousand students on ten types of
tests and put the results into a 1000 × 10 matrix M . He took the best rank
two approximation (in the sense of minimizing the Frobenius norm) of M and
found vectors u1, u2 ∈ R1000 and v1, v2 ∈ R10 such that

M̃ = u1v
T
1 + u2v

T
2 =

 | |
u1 u2
| |

 | |
v1 v2
| |

T

(1)

By the Eckart-Young theorem, this low rank approximation M̃ is unique if the
second largest singular value is not equal to the third largest one. However, the
vectors u1, u2, v1, and v2 are generally not unique. We take a detailed look into
this approach via the following example.

Example 1.4. Assume we have three students: Alice, Bob, and Carol; three
tests: classics, math, and music. We put their performance on each test into
the following matrix.

Classics Math Music
Alice 19 26 17
Bob 8 17 9

Carol 7 12 7

By writing the score matrix as in Eq. (1), we can see that there are multiple
options: 19 26 17

8 17 9
7 12 7

 =

 4 3
3 1
2 1

[ 1 5 2
5 2 3

]
=

 1 3
2 1
1 1

[ 1 5 2
6 7 5

]
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Although the uniqueness of low rank approximation can be guaranteed un-
der certain conditions per the Eckart-Young theorem, how to decompose the
low rank approximation is generally not unique. One reason for this is the “ro-
tation problem”. Consider M = UV T as a decomposition of M. Then for any
orthogonal matrix O, we have that

M = UV T = UOOTV T

is also a valid decomposition of M . Another reason for this ambiguity comes
from the fact that the singular vectors are not uniquely determined if there exist
multiplet singular values.

To overcome this ambiguity, one can collect the performance of students
during day and night, respectively, assuming that the time of the day plays a
role in students’ performance.

Example 1.5. Assume the performance matrix in Example 1.4 is obtained in
the day. In the night, we obtain another score matrix as following.

Classics Math Music
Alice 23 46 25
Bob 11 32 15

Carol 9 22 11

By stacking this score matrix onto the matrix in Example 1.4, we get a tensor
T in R3×3×2, where the third dimension represents “day” or “night”.

We can get a decomposition of T is 4
3
2

⊗
 1

5
2

⊗ [ 1
2

]
+

 3
1
1

⊗
 5

2
3

⊗ [ 1
2

]
(2)

By a little abuse of the notation “⊗”1, we write it more compactly: 4 3
3 1
2 1

⊗
 1 5

5 2
2 3

⊗ [ 1 1
2 2

]
.

We can see the first two matrices are the first decomposition in Example 1.4. If
we put the second decomposition in Example 1.4 as the first two matrices, we
will find that there exists no valid third matrix that decomposes T . This is by no
coincidence because the uniqueness of tensor decomposition is guaranteed under
certain conditions, which we will discuss next.

2 Tensor Decomposition

Definition 2.1. A rank one tensor is a tensor of the form T = x⊗y⊗w, where
x, y and w are non-zero vectors.

1It is an abuse because the tensor product of two R3×2 matrices is in R9×4
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Definition 2.2. The rank of a tensor T is the minimum r such that we can
write T as the sum of r rank one tensors, i.e.,

T =

r∑
i=1

xi ⊗ yi ⊗ wi.

And we call the identification of {xi, yi, wi}ri=1 the problem of “tensor de-
composition”. The following theorem gives a sufficient condition under which
there exists a unique decomposition of tensor T .

Theorem 2.3. [2] If there exists a decomposition of tensor T such that

T =

r∑
i=1

xi ⊗ yi ⊗ wi,

where {xi} is linearly independent, {yi} is linearly independent, and no pairs of
{wi} are colinear, then the above decomposition is unique up to scaling.

Using this theorem, we can see that the decomposition in Eq. (2) is indeed
unique. The implication of this theorem is that if we manage to find one de-
composition of tensor T , then we only need to check the vectors and make sure
this is the unique decomposition. However, an algorithm is yet to be invented
to obtain at least one decomposition.

2.1 Jenrich’s Algorithm

Albeit the advantages brought by tensor methods (as seen in Example 1.5), there
are obstacles as well when working on tensors. As a result, classic decomposition
algorithms for matrices do not hold for tensors. For example, for a matrix A,
subtracting the best rank one approximation Ã from A will lead to a lower rank
in A− Ã, so that we can remove the best rank one approximation step-by-step
from A. But subtracting the best rank one approximation from a tensor T can
actually increase the rank of T .

In addition to the issue above, a more worrisome issue in fact is that the
“border rank” (see definition below) of a tensor T is not necessarily equal to its
rank.

Definition 2.4. The border rank of a tensor. Let T ∈ Rn1×n2×···×nk . The
border rank of T is the minimum r such that for arbitrarily small ε > 0, there

exists T ′ =
∑r

i=1 v
(i)
1 ⊗ · · · ⊗ v

(i)
k and ‖T − T ′‖ < ε, where v

(i)
j ∈ Rnj , ∀i, j.

When k = 2 (i.e., for matrices), the border rank is equal to the rank. But
for general tensors, this property does not hold any more (no matter what norm
is used above).

The Algorithm 1 is the Jenrich’s algorithm for tensor decomposition under
“mild” conditions [2].
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Algorithm 1: Jenrich’s Tensor Decomposition Algorithm

Input: Tensor T ∈ Rm×n×p satisfying the conditions in Theorem 2.3. In
addition, its rank r ≤ min(m,n).

1 Randomly choose unit-length vectors a, b ∈ Rp

2 Ta ← T (∗, ∗, a) =
∑p

j=1 ajT·,·,j ∈ Rm×n

3 Tb ← T (∗, ∗, b) =
∑p

j=1 bjT·,·,j ∈ Rm×n

4 Perform the eigendecomposition of TaT
†
b =

∑r
i=1 λixix

T
i and

TbT
†
a =

∑r
i=1 αiyiy

T
i

5 Pair up xi and yj if λi = 1/αj

6 Solve for {wi} in the linear equation system T =
∑r

i=1 xi ⊗ yi ⊗ wi

7 return {xi, yi, wi}ri=1

Note 2.5. In Algorithm 1, Ta =
∑r

i=1(wT
i a)xiy

T
i , Tb =

∑r
i=1(wT

i b)xiy
T
i . Let

X and Y be the matrices formed by {xi} and {yi}. Let Da = diag(wT
1 a,w

T
2 a, . . . , w

T
r a)

and Db = diag(wT
1 b, w

T
2 b, . . . , w

T
r b). Then we can represent Ta and Tb com-

pactly:
Ta = XDaY

T , Tb = XDbY
T .

Then it is straightforward to see that TaT
†
b = XDaD

†
bX

T and TbT
†
a =

XDbD
†
aX

T . This fact explains why on Line 4 we know TaT
†
b and TbT

†
a are

diagonalizable and have the same rank r, and also explains why on Line 5 it is
guaranteed that each xi has a yj to pair up.

Since we know T satisfies the conditions in Theorem 2.3, there exists at least
one solution to the equation on Line 6. It is yet to see if this solution is unique.
This requires the introduction of Khatri-Rao product.

Definition 2.6. The Khatri-Rao product ⊗KR between two matrices U ∈
Rm×r and V ∈ Rn×r is in Rmn×r, where its i-th column is

(U ⊗KR V )i = ui ⊗ vi.

Using the Khatri-Rao product, we can rewrite the linear equation system
on Line 6 as T = (X ⊗KR Y )W , where W = [wT

1 . . . w
T
r ]T . So the problem

now is whether X ⊗KR Y is full rank. The following theorem provides such a
guarantee.

Theorem 2.7. If rank(U)=rank(V )=r ≤ m+ n− 1, then rank(U ⊗KR V )=r.

Since X and Y are both formed by eigenvectors and thus have full column
rank, by the above theorem it is obvious that Line 6 yields only one unique
solution W .

Note in Algorithm 1, we have required that the rank of tensor T be no larger
than m and n. This is because TaT

†
b and TbT

†
a are both Rm×n matrices and

we need to perform eigendecomposition on them. There exist extensions that
handle the case when r is larger than any of the dimensions of its factors [2].
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3 Mixture of Gaussians: A Tensor Approach

The method of moments, as a classical parameter estimation technique, sees the
difficulty of learning latent variable models (especially high-dimensional ones)
since it may involve solving computationally intractable polynomial equations.
By far, the most popular heuristic method is the Expectation-Maximization
(EM) algorithm. However, EM may suffer from slow convergence and poor
quality of local optima [1]. In this section, we talk about how to use the tensor
decomposition introduced above to approach the learning problem of latent
variable models, using the mixture of Gaussians as an example. For other latent
variable models, similar tensor structures can also be applied. See [1, 2].

Consider a mixture of k Gaussian distributions. Let wi ∈ (0, 1) be the
probability of choosing the i-th Gaussian distribution and the mean of it is
µi ∈ Rd, i = 1, 2, . . . , k. Then

x := µh + z, w.p. wh, for h = 1, 2, . . . , k,

where “w.p.” stands for “with probability” and z|h ∼ N (0, σ2
hId), where Id

is the d-th order identity matrix. Obviously, x is d dimensional as well. The
following theorem gives a way to learning {µh, σh, wh}.

Theorem 3.1. [4] Assume wi > 0, ∀i and the matrix A = [µ1|µ2| . . . |µk] has
full column rank (this also implies that d ≥ k). Denote the average variance by

σ̄2 =
∑k

i=1 wiσ
2
i . Let v ∈ Rd be any unit length eigenvector corresponding to

the eigenvalue of σ̄2. Define

M1 = E
[
x(vT (x− E [x]))2

]
∈ Rd,

M2 = E [x⊗ x]− σ̄2Id ∈ Rd×d,

M3 = E [x⊗ x⊗ x]−
d∑

i=1

(M1 ⊗ ei ⊗ ei + ei ⊗M1 ⊗ ei + ei ⊗ ei ⊗M1),

where ei ∈ Rd is the basis vector with only the i-th entry being 1 and others
being 0. Then

M1 =

k∑
i=1

wiσ
2
i µi,M2 =

k∑
i=1

wiµi ⊗ µi,M3 =

k∑
i=1

wiµi ⊗ µi ⊗ µi.

Proof. First, σ̄2 is the an eigenvalue of the covariance matrix

E
[
(x− E [x])(x− E [x])T

]
,

and vT (µi − µ̄) = 0 for all i. To see this, let µ̄ = E [x] =
∑

i wiµi. Then the
covariance matrix is

E [(x− µ̄)⊗ (x− µ̄)] =

k∑
i=1

wi(µi − µ̄)⊗ (µi − µ̄) + σ̄2Id.
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Noticing that the vectors µi−µ̄ are linearly dependent because
∑

i wi(µi − µ̄) =

0, we know that the semidefinite matrix
∑k

i=1 wi(µi − µ̄)⊗ (µi − µ̄) is not full
rank (its smallest eigenvalue is thus zero). Because of the existence of σ̄2Id,
the smallest eigenvalue of E [(x− µ̄)⊗ (x− µ̄)] is σ̄2. Its eigenvectors associ-

ated with σ̄2 (i.e., v) are also the eigenvectors of
∑k

i=1 wi(µi − µ̄)⊗ (µi − µ̄)

associated with 0. Since
∑k

i=1 wi(µi − µ̄)⊗ (µi − µ̄) is obviously non-zero (oth-
erwise, x is simply a constant), all of its eigenvectors associated with non-
zero eigenvalues must be orthogonal to v. Hence, v is in the null space of∑k

i=1 wi(µi − µ̄)⊗ (µi − µ̄) and vT (µi − µ̄) = 0.
Then using this fact, we have

M1 = E
[
x(vT (x− E [x]))2

]
= E

[
(µh + z)(vT (µh − µ̄+ z))2

]
= E

[
(µh + z)(vT z)2

]
= E

[
E
[
(µh + z)(vT z)2|h

]]
= E

[
µhσ

2
h

]
=

k∑
i=1

wiσ
2
i µi.

Next, since E [z ⊗ z] =
∑k

i=1 wiσ
2
i Id = σ̄2Id, we have

M2 = E [x⊗ x]− σ̄2Id = E [µh ⊗ µh] + E [z ⊗ z]− σ̄2Id = E [µh ⊗ µh]

=

k∑
i=1

wiµi ⊗ µi.

Finally for M3, we observe that

E [x⊗ x⊗ x] = E [µh ⊗ µh ⊗ µh] + E [µh ⊗ z ⊗ z]
+E [z ⊗ µh ⊗ z] + E [z ⊗ z ⊗ µh] ,

where terms like E [µh ⊗ µh ⊗ z] and E [z ⊗ z ⊗ z] vanish because z|h ∼ N (0, σ2
hId).

We also observe that

E [µh ⊗ z ⊗ z] = E [E [µh ⊗ z ⊗ z|h]]

= E

E
 d∑
i,j=1

zizjµh ⊗ ei ⊗ ej |h


= E

[
d∑

i=1

σ2
hµh ⊗ ei ⊗ ej

]

=

d∑
i=1

M1 ⊗ ei ⊗ ej .

Then
M3 = E [µh ⊗ µh ⊗ µh]

obviously holds.

Theorem 3.1 gives rise to a simple estimator that derives the desired param-
eters from the observable moments (see Theorem 2 in [4]).
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