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Abstract

When handling non-linear least squares problems, we usually need to calculate the gradient of the

sum of squares, which has been well defined if the squares are dependent on real variables. However,

sometimes these squares are dependent on complex variables, in which case more careful consideration

should be involved.

I. NON-LINEAR LEAST SQUARES PROBLEM

The general non-linear squares problem is trying to find the optimality,

α? = arg min
α∈Fn

f(r(α)), (1)

where f = ‖r(α)‖22, and r(α) : Fn → Fm with m ≥ n.

If F = R, i.e., r ∈ Rm, α ∈ Rn, then

5f = 2JT r, (2)

where J is the Jacobian matrix of r(α) and defined as

J =


∂r1
∂α1

∂r1
∂α2

· · · ∂r1
∂αn

∂r2
∂α1

∂r2
∂α2

· · · ∂r2
∂αn

...
... . . . ...

∂rm
∂α1

∂rm
∂α2

· · · ∂rm
∂αn

 . (3)

However, Eqn. (2) does not always hold when r(α) ∈ Cm.
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II. GRADIENT

In this section we will talk about the case where r(α) : Rn → Cm.

A. n = m = 1

When n = m = 1, r(α) is simply a complex scalar function with one single real variable.

Assuming r(α) = u(α) + iv(α), where u(α) and v(α) are real functions, we have

f = ‖r(α)‖22 = u2 + v2, (4)
∂f

∂α
= 2u

∂u

∂α
+ 2v

∂v

∂α
. (5)

Considering
∂r

∂α
=
∂u

∂α
+ i

∂v

∂α
, (6)

we have
∂f

∂α
= r∗

∂r

∂α
+ r(

∂r

∂α
)∗. (7)

where ”∗” denotes complex conjugate.

B. n = 1,m > 1

When m > 1, r(α) is a vector function:

r(α) =


r1(α)

r2(α)
...

rm(α)

 . (8)

Then we have:

f = ‖r(α)‖22 = ‖r1(α)‖22 + ‖r2(α)‖22 + · · ·+ ‖rm(α)‖22, (9)

∂f

∂α
= r∗1

∂r1
∂α

+ r1(
∂r1
∂α

)∗ + · · ·+ r∗m
∂rm
∂α

+ rm(
∂rm
∂α

)∗

= [ r∗1, · · · , r∗m ]


∂r1
∂α
...

∂rm
∂α

+ [ (∂r1
∂α

)∗, · · · , (∂rm
∂α

)∗ ]


r1
...

rm


= (JHα r)

H + JHα r, (10)
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where ”H” denotes conjugate transpose and Jα is the Jacobian matrix:

Jα =


∂r1
∂α

∂r2
∂α
...

∂rm
∂α

 . (11)

C. n > 1,m > 1

5f =


∂f
∂α1

...
∂f
∂αn

.

 (12)

According to Eqn. (10), we have,

∂f

∂αj
= (JHj r)

H + JHj r, j = 1, 2, ..., n, (13)

where Jj is the j-th column of the Jacobian matrix as shown in Eqn. (3).

5f =


(JH1 r)

H

...

(JHn r)
H

+


JH1 r

...

JHn r


= (JHr)∗ + JHr. (14)

Obviously this result is consistent with the result of F = R as shown in Eqn. (2).

III. ANOTHER WAY OF CALCULATING THE GRADIENT

We have already known that the difficulty is brought by the fact that r(α) ∈ Cm. We can

directly use the result as shown in Eqn. (14). Nevertheless, we can also decompose r into real

part and imaginary part:

r(α) = u(α) + iv(α)

=


u1(α)

...

um(α)

+ i


v1(α)

...

vm(α)

 . (15)
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If we redefine our non-linear least squares problem as following, we can overcome the incon-

venience caused by the complexity of r.

α? = arg min
α∈Fn

f(r̂(α)), (16)

r̂(α) =

 u(α)

v(α)


2m×1

, (17)

f = ‖r̂(α)‖22 (18)

Denoting the original Jacobian matrix as described in Eqn. (3) as Jr, and the new Jacobian

matrix as Jr̂, we can see:

Jr̂ =



∂u1
∂α1

· · · ∂u1
∂αn

... . . . ...
∂um
∂α1

· · · ∂um
∂αn

∂v1
∂α1

· · · ∂v1
∂αn

... . . . ...
∂vm
∂α1

· · · ∂vm
∂αn


=

 Ju

Jv

 . (19)

In this way, we can calculate the gradient as:

5f = 2JTr̂ r̂. (20)

A useful fact is that:

Ju = real(Jr), Jv = imag(Jr). (21)
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