Towards Short-TE MR Spectroscopic Imaging: Spectral Decomposition and Removal of Baseline Signals

Qiang Ning^{1,2}, Chao Ma¹, Curtis L. Johnson¹, and Zhi-Pei Liang^{1,2}

¹Beckman Institute for Advanced Science and Techonology, University of Illinois at Urbana-Champaign

²Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign

INTRODUCTION

Magnetic resonance spectroscopic imaging (MRSI)

- A powerful tool for mapping metabolite levels in vivo
- Challenge: very low SNR

Short echo-time (TE) MRSI

- ✓ High intrinsic SNR
- **√** Rich metabolic information
- X Significant baseline signals
- X Difficult quantification problem

Short-TE Signal

To address these issues, we exploit the temporal separability of short-TE MRSI signals to decompose them into three components

- Long-T₂ metabolites
- Short-T, metabolites
- Baselines

PROPOSED METHOD

Temporal Separability

Signal model of MRSI data

$$d(t) = \sum_{n=1}^{N} c_n e^{-\frac{t}{T_{2,n}}} e^{-i2\pi f_n(t-T_E)} g(t-T_E) + \xi(t)$$

• $g(\cdot)$ -- signal decay caused by field inhomogeneity

Proposed method

Estimate $long-T_2$ metabolites using the variable projection method^[1]

$$\min_{lpha_L, c_L} \left\| \begin{bmatrix} d_S^{(1)} \\ d_L \end{bmatrix} - \begin{bmatrix} \Phi_S^{(1)}(lpha_L) \\ \Phi_L(lpha_L) \end{bmatrix} c_L \right\|_{\mathcal{L}}$$

- Esimate short- T_2 metabolites using HSVD^[2]
- Estimate *baselines* using smooth splines fitting

RESULTS

In vivo human brain data

- $TE_1=30 \text{ ms}, TE_2=135 \text{ ms}$
- Water and lipid signals are already removed

CONCLUSION

A novel method has been proposed for processing short-TE MRSI data, which may improve the practical utility of short-TE MRSI experiments.

REFERENCE

[1] G. H. Golub, et al., SIAM J Numer Analy 1973; 10 (2): 413-432.

[2] H. Barkhuijsen, *et al.*, J Magn Reson 1987; 73: 553-557.

