

Temporal Common Sense Acquisition with Minimal Supervision

Ben Zhou

Qiang Ning*

Daniel Khashabi* Dan Roth

Dr. Porter is **taking a vacation** and ____ be able to see you soon.

Dr. Porter is **taking a walk** and ____ be able to see you soon.

Dr. Porter is **taking a vacation** and ____ be able to see you soon.

Dr. Porter is **taking a walk** and be able to see you soon.

Dr. Porter is **taking a vacation** and will not be able to see you soon.

Dr. Porter is **taking a walk** and be able to see you soon.

Dr. Porter is **taking a vacation** and will not be able to see you soon.

Dr. Porter is **taking a walk** and ____ be able to see you soon.

■ Choose from "will" or "will not"

Dr. Porter is **taking a vacation** and will not be able to see you soon.

Time:

- An important component for reading comprehension
- Commonsense-level understanding is required

Dr. Porter is **taking a walk** and will be able to see you soon.

This work

- Time
 - ☐ An important component for reading comprehension
 - ☐ Commonsense-level understanding is required
- In this work
 - □ TacoLM A general LM that is aware of time and temporal common sense
 - Minimal Supervision

Predicted Duration from TacoLM

Time

- ☐ An important component for reading comprehension
- ☐ Commonsense-level understanding is required

- Time
 - ☐ An important component for reading comprehension
 - ☐ Commonsense-level understanding is required

Acquiring Temporal Common Sense

Challenging

- ☐ Reporting Biases:
 - people rarely mention the common sense to be efficient "It took me 2 seconds to move my chair"
 - Sometimes highlight rarities "It took me an hour to move my chair"
- ☐ Highly Contextual:
 - The duration of "Move" depends on the object's weight/size.

TacoLM – the Big Picture

Step 1: Information Extraction

- ☐ Use high-precision patterns to acquire temporal information
 - Unsupervised automatic extraction
- □ Overcomes reporting biases with a large amount of natural text

Step 2: Joint Language Model Pre-training

- ☐ Multiple temporal dimensions
 - Duration ~ 1 / Frequency

"I brush my teeth every morning"

Duration of "brushing teeth" < morning

Further generalization to combat reporting biases

Output: TacoLM- a time-aware general BERT

Goal: build a general time-aware LM with minimal supervision

Step 1: Information Extraction

Step 1: Information Extraction

Step 2: Joint Language Model Pre-training

Output: TacoLM- a time-aware general BERT

Information Extraction

- Use high-precision patterns based on SRL
 - □ Duration
 - □ Frequency
 - □ Typical Time
 - □ Duration Upperbound
 - □ Hierarchy
- Labels
 - □ Units (seconds, ... centuries)
 - ☐ Temporal keywords (Monday, January, ...)
- Output
 - □ 4.3M instances of (event, dimension, value) tuple

Step 2: Language Model Pre-training

Step 1: Information Extraction

Step 2: Joint Language Model Pre-training

Output: TacoLM- a time-aware general BERT

Sequence Classification

- Consider [Event] [Dimension] [Value] tuples in each instance
- [E1, E2, ... M, ET ... En, SEP, M, Dim, Val]
 - ☐ M is a special marker, same across all dimension/value
 - □ Dim is a marker for each dimension, Val is a marker for the value of the dimension
- With an example:

Joint Model with Masked LM

I [M] played basketball [SEP] [M] [DUR] [HRS]

- Baseline Model: Pre-trained BERT-base
- Main objective: mask some tokens and recover them
- How we mask:
 - ☐ With some probability, mask temporal value while keeping others

 [I[M] played basketball [SEP] [M] [DUR] [MASK]
 - Otherwise, mask a certain portion of E1...En while keeping temporal value unchanged
 - I [M] [MASK] [MASK] [SEP] [M] [DUR] [HRS]
 - ☐ Max (P(Event|Dim,Val) + P(Val|Event,Dim)); Preserving original LM capability

Benefits:

- ☐ Jointly learn **one** transformer towards **all** dimensions
- ☐ Labels play a role in the transformer
- \Box One event may contain more than one (Dim + Val), so the model learns dimension relationships

Joint Model with Masked LM

I [M] played basketball [SEP] [M] [DUR] [HRS]

- 1: Soft cross entropy for recovering Val
 - □ If gold label is "hours", the label vector **y** for "minutes, hours, days" will be [0.16, 0.47, 0.25]

$$\hat{\mathbf{x}} = \log(softmax(\mathbf{x}))$$

$$loss = -\hat{\mathbf{x}}^{\mathsf{T}}\mathbf{y}$$

- 2: Label weight adjustment
 - ☐ Instances with "seconds" have higher loss than those with "years"
- 3: Full event masking
 - □ Instead of 15% used by BERT, we use 60% when masking E1, ... En to reduce biases

I [M] had a cup of [MASK] [SEP] [M] [TYP] [Evening]

-> MASK = coffee, because "cup of"

I [M] had [MASK] [MASK] of [MASK] [SEP] [M] [TYP] [Evening]

Evaluation

Step 1: Information Extraction

Step 2: Joint Language Model Pre-training

Output: TacoLM- a time-aware general BERT

Evaluation: Intrinsic (Embedding space)

- A collection of events with duration of "seconds," "weeks" or "centuries" (three extremes)
- BERT (left), Ours (right) representation on the event's trigger
 - □ PCA + t-SNE to 2D visualization
- \blacksquare Our model separates the events much better (\rightarrow our model is aware of time)

BERT TacoLM

Evaluation: Intrinsic (Quantitatively)

- Metric: Distance to gold label
 - □ Dist (seconds, hours)=2, Dist (minutes, hours)=1
 - □ **Lower the better**
- RealNews [Zellers et al. 2019]: no document overlap
 - ☐ Raw corpus + MTurk annotation

19% average improvement

■ UDS-T [Vashishtha et al. 2019]: duration only

Evaluation: Extrinsic

- Use as a general language model with finetuning
- Task: Identify event-event hierarchical relations
 - ☐ HiEVE [Glavas et al. 2014]
 - ☐ Child-Parent / Parent-Child / Coreference
 - A bomb exploded. This is the sixth accident since the war started.
- Model (finetuned):
 - ☐ Sentence pair classification
- Results (F1, higher the better)

More Intrinsic/Extrinsic experiments in the paper!

Conclusion - TacoLM

Time-aware with minimal supervision

I played basketball for 2 hours

Thank you! Code & Data:

https://github.com/CogComp/TacoLM

Joint pre-training over multiple temporal dimensions

Frequency of "brushing teeth" = every morning"

Duration of "brushing teeth" < morning

- Able to directly predict events' duration, frequency or typical time
 - □ 19% better on direct prediction tasks
 - ☐ Bell-shaped predictive distributions
 - □ Differentiates fine grained event contexts

- Works as a general language model
 - □ 8% improvement on child-parent event relation extraction