Exploiting Partially Annotated Data for Temporal Relation Extraction
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Introduction

Extracting temporal relations (TempRel) between Aleorithm 1: Joint leamnine from F and P B b A
: . rithm 1: Joint learning from F an / _ L *
events (e.g., before, after, includes, equal) is an 50 , & Y 1 = argmax Zi< j ZTER fr (1)L (15)
. . . bootstrapping / L
important task 1n natural language understanding. ..
Input: /, P, Learn, Inference s.t. 2,1, (Z] ) =1,
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The TempRels in a doc can be conveniently modeled 15 s .Learn(]-“ ) | \ N . N .
as a graph: 2 In1t.1a11ze SF+p = Sf. | | | L (2g) + Ly (5K) — 2ip—1Lrm (ik) <1,
3 while convergence criteria not satisfied do ! (transitivity)
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Example: . . . tons of earth cascaded down a hillside, ripping two houses & = Inf . g i
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cvacuation o1 ncaroy nomes and sail Cy 1l monitor tne sniring ground.. . . - . . .
7  P=PUix Y)}~ CoDL Framework ¢ Bootstrapping: Ne?w annotations are predicted on P
/ripping » nfonityr /rippi,lg ————— monitor 8 Srip = Learn(F + P) (Chang etal,, 2012.) ¢ Structural constraints: Enforced via ILP constraints
- ==~ e o return Sr.p Partial annotation: Enforced via equality constraints
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Benchmark Performance on the Test Split of TimeBank-Dense
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TempRel annotation requires labeling all the edges, No Training Same Sentence Nearby Sentence Overall Awareness
which is very labor intensive. ~ | Data Bootstrap | P R F P R F P R F P R F
. Annotating each edge is time—consuming 1 F - 47.1 497 484 | 40.2 379 390 | 42.1 41.0 41.5 | 40.0 40.7 40.3
. T dges! O(n2) 2 | P - 370 331 350|344 196 249 | 377 236 290|369 240 29.1
00 Mmany edges: Ui 3 | P - 34.1 525 413|261 481 338|302 521 382|286 499 364
4 | Fyplull - 38.5 322 351|401 381 39.1 |40.8 353 378 | 37.1 362 36.6
As a result, only a small number of docs are fully 5 | F+P - 437 439 438 | 39.1 383 387 | 41.8 407 412 | 38.6 414 40.0
annotated. Less docs = Less coverage of phenomena! 6 | F+pPrmrty Local 4177 503 45.6 | 395 48.1 434 | 418 504 457 | 409 475 439
7 F+pEmpty Global 4477 555 49.5 | 40.1 48.7 44 42.0 514 46.2 | 41.1 48.3 444
Possible solution: 8 F+P Local 43.6 50 46.6 43 469 448 | 4377 47.8 456 4?2 45.6 43.7
e (Collect more documents * Learn from partial 9 F+P Global 449 56.1 499 | 434 52.3 47.5 44.7 54.1 49.0 | 44.1 50.8 47.2
tation (thi : o :
annotation (this paper) PFull: P with missing annotations filled by “Vague” Overall Improvement: 1 vs 9

PEmpty: P with all annotations removed
“ Bootstrap: referring to specific implementations of Line J J

6 in Algorithm 1.

* F: 36 fully annotated docs from TBDense * Local=don’t enforce structural copstraints. BOOtISt\fsl%pmg Stmcmrglvcso;l T Partialﬁln; e
. P: 220 partially annotated docs from TBAQ * (Global=enforce structural constraints. 8 vs 9
_ Distussion
Train: 22 F docs + 220 P docs
Dev: 5 F docs Machine Learning requires supervision, but task specific TempRel annotation 1s labor intensive. Fully
Test: 9 F docs annotation is significantly limited by expertise and cost. annotated datasets (F) are relatively small and there
This raises three key questions: are more partial datasets (P).This work first
Data #Doc | #Edges | Ratio | Type  How can we learn from imperfect supervision, e.g., investigates learning from both types of datasets,
TBT—é);nse 23260 gglé 11020(;70 ~77; partial, noisy, or indirect? (Answered by this paper) and shows promise, which 1s a g()od starting point
Table 1: Cocr2 us statistics of .the full an; artially anno toowean We characterize the improvement ﬁtom for further mvestigations of incidental supervision
v T A R T o st consns nd i ) s collction shemes, of e e
Bank and AQUAINT, which is the training set provided by extraction task and of other general machine
the TempEyalS workshop.. #Edges: The number of annotated learning tasks.
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